Corruption perception and information access: a global analysis

Authors

  • Emerson Silva Mazulo Universidade de Brasília
  • Paulo Augusto Pettenuzzo de Britto Programa de Pós-graduação em Ciências Contábeis. Programa de Pós-graduação em Economia do Setor Público. Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas. Universidade de Brasília. http://orcid.org/0000-0001-7462-9096

DOI:

https://doi.org/10.21710/rch.v29i0.578

Keywords:

corruption, corruption perception measures, subjectivity bias, measurement error, access to information, determinants of the perception of corruption

Abstract

Studies on corruption deal with the issue both from a positive point of view, especially to understand its causes, and from the normative, with emphasis on ways to reduce corruption. An important motivation for these studies is to contribute to the economic and social development of several countries. Empirical literature has contributed to the study of corruption by confirming, or not, several theories. Empirical analyzes mostly employ perception-based corruption measures, indirect measures susceptible to subjectivity bias and measurement errors, leaving reasonable doubts about their validity and reliability. This article fits into that literature by verifying whether the Corruption Perception Index shows bias associated from the level of access to information in a country, measured by the percentage of the population with access to the internet, and the volume of queries for the term corruption in a given country measured by the Google Trends tool. Using a panel of 79 countries and six years, a fixed effects model was estimated. The results indicate statistical significance for the estimated parameters. The estimated coefficients indicate that the marginal effects are quite small. However, the explanatory power of the specific component for the individual in the fixed effects model indicates that the perception of corruption would be explained by reputational aspects such as image, fame, notoriety or even importance of the country. This hypothesis, however, must be analyzed in future studies.

Author Biographies

Emerson Silva Mazulo, Universidade de Brasília

Mestre em Contabilidade. Doutorando no Programa de Pó-graduação em Ciências Contábeis. Universidade de Brasília

Paulo Augusto Pettenuzzo de Britto, Programa de Pós-graduação em Ciências Contábeis. Programa de Pós-graduação em Economia do Setor Público. Faculdade de Economia, Administração, Contabilidade e Gestão de Políticas Públicas. Universidade de Brasília.

Ph.D. em Economia pela University of Illinois at Urbana-Champaign. Professor Associado da Unversidade de Brasília

References

Abramo, C. W. (2005). Percepções pantanosas: a dificuldade de medir a corrupção. Novos Estudos-CEBRAP, 73, 33-37.

Banco Mundial (2000). Anticorruption in transition: a contribution to the policy debate.Washington, DC: World Bank.

Banco Mundial (2006). A decade of measuring the quality of governance: governance matters 2006, Worldwide Governance Indicators. Washington, DC: World Bank.

Banco Mundial (2014). The worldwide governance indicators (WGI) project. Documentation. Recuperado de: http://info.worldbank.org/governance/wgi/#doc.

Barro, R. J. (1991). Economic growth in a cross section of countries. Quarterly Journal of Economics, 106(2), 407-443.

Carraro, A. & Damé, O. M. (2007). Educação e corrupção: a busca de uma evidência empírica. Latin American and Caribbean Law and Economics Association (ALACDE) Annual Papers. UC Berkeley: Berkeley Program in Law and Economics.

Charron, N. (2016). Do corruption measures have a perception problem? Assessing the relationship between experiences and perceptions of corruption among citizens and experts. European Political Science Review, 8(1), 147-171.

Gibbons, K. M. (1990). Toward an attitudinal definition of corruption. In Heidenheimer, A. J.; Johnston, M. & Levine, V.T. (Org.). Political corruption: a handbook. London: Transaction Publishers.

Gil, A. C. (2008). Métodos e técnicas de pesquisa social. São Paulo, SP: Atlas.

Greene, W. (2017). Econometric analysis. New York, NY: Pearson.

Gujarati, D. & Porter, D. (2011). Econometria básica. Porto Alegre, RS: McGraw Hill-Bookman.

Kaufmann, D; Kraay, A; & Mastruzzi, M. (2010). The Worldwide Governance Indicators Methodology and Analytical Issues. Policy Research Working Paper 5430. Washington, DC: The World Bank.

Klitgaard, R. (1988). Controlling corruption. Berkeley, CA: University of California Press.

Ko, K. & Samajdar, A. (2010) Evaluation of international corruption indexes: Should we believe them or not? The Social Science Journal, 47(3), 508-540

Kohler, U. & Kreuter, F. (2005). Data analysis using Stata. College Station, TX: Stata Press.

Krueger, A. (1974) The Political Economy of the Rent-Seeking Society. American Economic Review, 64(3): 291-303.

Leff, N. H. (1964). Economic development through bureaucratic corruption. American BehavioralScientist, 8(3), 8–14.

Matias-Pereira, J. (2018). Democracia, transparência e corrupção no Brasil. GIGAPP Estudios Working Papern. 92.

Mauro, P. (1995). Corruption and growth. Quarterly Journal of Economics, 110, 681-712.

Méon, P.-G. & Weill, L (2010). Is corruption an efficient grease? World development, 38(3), 244-259.

Nye, J. (1967). Corruption and political development: a cost-benefitanalysis. American Political Science Review, 61(2), 417-427.

Olken, B. (2007). Monitoring corruption: evidence from a field experiment in Indonesia. Journal of Political Economy, 115(2), 200–249.

ONU – Organização das Nações Unidas. (2016). Corrupção custa mais de US$ 2,6 trilhões por ano, alerta PNUD. Recuperado de https://nacoesunidas.org/corrupcao-custa-mais-de-us-26-trilhoes-por-ano-alerta-pnud/.

ONU – Organização das Nações Unidas (2018). Manual on Corruption Surveys. Center of Excellence in Statistical Information on Government, Crime, Victimization and Justice, Vienna. Recuperado de https://www.unodc.org/documents/data-and-analysis/Crime-statistics/CorruptionManual _2018_web.pdf.

Rose-Ackerman, S. A. (1978). Corruption: a study in political economy. New York, NY: Academic Press.

Rose-Ackerman, S. A. & Palifka, B. J. (2016). Corruption and government: causes, consequences, and reform. Cambridge, MA: Cambridge University Press.

Shleifer, A. & Vishny, R. W. (1993). Corruption. Quarterly Journal of Economics, 108(3), 599–617.

Silva, M. F. G. da. (2000). Corrupção e desempenho econômico. In Speck, B. W.; Abramo, W. C.; Silva, M. F. G. da; Fleisher, D. & Nassmacher, K.-H. Os custos da corrupção. São Paulo, SP: Fundação Konrad Adenauer.

Speck, B. W. (2000). Mensurando a corrupção: uma revisão de dados provenientes de pesquisas empíricas. In Speck, B. W.; Abramo, W. C.; Silva, M. F. G. da; Fleisher, D. & Nassmacher, K.-H. Os custos da corrupção. São Paulo, SP: Fundação Konrad Adenauer.

Tanzi, V. & Davoodi, H. (1997). Corruption, Public investment, and Growth. IMF Working Papern. 97/139. Washington, DC: IMF.

TI –Transparência Internacional. (2019a) Corruption Perceptions Index 2019: Full Scource Description. Berlin: TI. Recuperado de https://comunidade.transparenciainternacional.org.br/asset/68:ipc-metodologia-2019.

TI –Transparência Internacional. (2019b) Corruption Perceptions Index 2019: Technical Methodology Note. Berlin: TI. Recuperado de https://comunidade.transparenciainternacional.org.br/asset/68:ipc-metodologia-2019.

Timothy, J.; & González, J. (2003). Cultura política, capital social e percepções sobre corrupção: uma investigação quantitativa em nível mundial. Revista de Sociologia e Política, 21, 51-69.

Williamson, O. (1998). The Economic Institutions of Capitalism. New York, NY: Simon and Schuster.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. Cambridge, MA: MIT press, 2010.

Published

2021-04-01

How to Cite

Mazulo, E. S., & Britto, P. A. P. de. (2021). Corruption perception and information access: a global analysis. Revista Cientí­fica Hermes, 29, 54–73. https://doi.org/10.21710/rch.v29i0.578

Issue

Section

ARTICLES